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Proper Effect Algebras Admitting No States

Zdenka Riecanowa!

We show that there is even a finite proper effect algebra admitting no states. Further,
every lattice effect algebra with an ordering set of valuations is an MV effect algebra
(consequently it can be organized into an MV algebra). An example of a regular effect
algebra admitting no ordering set of states is given. We prove that an Archimedean
atomic lattice effect algebra is an MV effect algebra iff it admits an ordering set of
valuations. Finally we show that every nonmodular complete effect algebra with trivial
center admits no order-continuous valuations.

1. INTRODUCTION AND BASIC DEFINITIONS

Modular orthocomplemented lattices (Birkhoff and Von Neumann, 1936) and
orthomodular lattices (Kalmbach, 1983) are measure-carrying structures that arise
in physical theories as the carrier of quantum mechanical probabilities (see also
Ptk and Pulmann@; 1991; Riean and Neubrunn, 1997). Effect algebras are
partial algebras (originally of positive self-adjoint operators lying between the
zero operator and the identity operator on Hilbert space) that arise in the theory of
guantum measurements as the structure in which a classical law of nhoncontradic-
tion (p A p’ = 0) could fail, thus allowing for the possibility of unsharp or fuzzy
propositions (Bennettand Foulis, 1994a, 1992; Kpka and Chovanec, 1994).

Many-valued logics (MV algebras) is a way of introducing more than two
values into modal logics (Chang, 1958).

Lattice effect algebras (dp lattices) give a common generalization of ortho-
modular lattices (including Boolean algebras) and MV algebras.

Definition 1.1.(Foulis and Bennett, 1994). A partial algebEs 6, 0, 1)is called
an effect algebraif 0, 1 are two distinguished elements amxlis a partially
defined binary operation orE that satisfies the following conditions for
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anya, b,ce E:

(Ei) boa=aebif a® bis defined,
(Eii) (adb)dc=aad (b c)if one side is defined,
(Eiii) for everya € P there exists a unique e P suchthaa® b =1 (we
puta’ = b),
(Eiv) if 1 & ais defined, themm = 0.

We often denote the effect algebg; @, 0, 1) briefly byE. In every effect
algebraE we can define the partial operatierand the partial orddet. by putting

a<b and boa=c iff a@cisdefined anda@®c=Dh.

Sincea @ ¢ = a® d impliesc = d, thes and the< are well defined. IfE with
the defined partial order is a lattice (a complete lattice) therg, 0, 1) is called
alattice effect algebrda complete effect algebya

A subsetQ with inherited operatiom is called asubeffect algebraf E iff
() 1 € Q, (ii) if out of elementsa, b, c € E with a @ b = c at least two are il
thena, b, c € Q.

Itis worth noting that if €; @, 0, 1) is an effect algebra thek (S, 0, 1) with
the partial binary operatiop defined above is B posetintroduced by Kpka and
Chovanec (1994) and vice versa (see also Deemskij and Pulmannay 2000;
Riecan and Neubrunn, 1997).

Definition 1.2. Assume thatE; &, 0, 1) is an effect algebra. Amap: E —
[0, 1] is called a (finitely additive¥tateon E if m(1) =1 anda <b = m(a®
b) = m(a) + m(b). We say thatn is faithful if m(a) = 0= a = 0.

Definition 1.3. A statem on a lattice effect algebrd&( &, 0, 1) is called avalu-
ationiffor a,b e E,aAnb =0= m(a Vv b) = m(a) + m(b).

Note that ifmis a state on an effect algeliathen fora, b € E witha < bwe
haveb = a @ (b © a), which impliesm(b) = m(a) + m(be a). Thusa < b =
m(a) < m(b) andm(b © a) = m(b) — m(a).

If w is a valuation on a lattice effect algebEathen evidentlyw(a v b) <
w(a) + w(b) for all a, b € E (we say that is subadditivg. On the other hand a
state on a lattice effect algebra need not be subadditive. kaR@a (in press a)
it has been shown that a stateon a lattice effect algebr& is valuation iff
o is subadditive. Moreover, if» is a valuation then for ala, b € E we have
w(@av b))+ w(@ A b) = w(@) + w(b).

The aim of this paper is to bring an example of a proper effect algebra admit-
ting no states and a proper regular effect algebra admitting no ordering set of states.
Moreover, we establish a relation between MV effect algebras (MV algebras) and
the existence of ordering sets of valuations.
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For basic properties of effect algebras and MV effect algebras we refer to
Dvurecenskij and Pulmanav(2000).

2. EXAMPLE OF A PROPER EFFECT ALGEBRA
ADMITTING NO STATES

R. Greechie (1971) has shown that there are even finite orthomodular lattices
admitting no states. On the other hand for every separable complete modular atomic
ortholattice there exists a faithful order-continuous state, actually a probability
measure being a valuation (Raowd, 1998; Kirchheimoaand Rieanow, 1997).

The last result has been extended bydaie\d (in press a) to complete modular
atomic effect algebras.

Recall that an orthomodular lattice (v, A,’, 0, 1) becomes a lattice effect
algebra if fora, b € E we say thatr @ b is defined iffa < b/, and then we put
a® b =avVvb. Thus Greechie’s example (Greechie, 1971) provide an example of
a lattice effect algebra admitting no states.

Effect algebras with respect t& operation and lattice operationsand A
possessed some asymmetry. Namely, for elemert®f effect algebree

(1) ifa® banda v b exists inE thena A b also exists irE,
(2) the existence cd @ b anda A b in E does not imply the existence of
avhb.

Definition 2.1. (RieCanow, 1997). An effect algebrd( &, 0, 1) is called proper
if there is a paim, b € E such that & b anda A b exist in E buta v b does not
existinE.

Riecanow (in press b) has shown that an effect algdbra proper iff there is
a paira, b € E such thaa A b = 0, anda & b is defined inE buta v b does not
exist. S. Gudder (2000, personal communication) proved that all real and complex
Hilbert space effect algebras of dimensions greater than one are proper.

l=4b=a®db®c=3a=3c 1=3b=a®bBc=3a=3c

20=0&¢

Example 2.3 Example 3.2
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Itis natural to ask whether proper effect algebras can be embedded into lattice
effect algebras. R@howd (1997) showed thad proper effect algebra cannot
be a dense subeffect algebra of a lattice effect algebiere, we say that an
effect algebreE; is adense subeffect algebad an effect algebr&; iff to every
nonzero elemerx € E, there is a nonzero elemepte E; with y < x. In this
case all suprema and infima of subset&gfxisting inE, are preserving foE;
(Riecanow, 1997).

Next example is an extension of Greechie’s result mentioned above to proper
effect algebras. For proper orthoalgebras we refer to Hamhalter, Navaraadnd Pt
1995.

Proposition 2.2. There is a finite proper effect algebra admitting no states.

Example 2.3. Letus consider the effect algebi;@®, 0, 1) withE = {0, a, b, c,
2a,2b, 2¢c, 3b, 1} and 1= a @ b @ ¢ = 3a = 4b = 3c. Evidently,a v b does not
exist in E butaAb =0 anda® b = 2c. It follows that E is a proper effect
algebra.

Assume that: E — (0, 1) is a state orkE. The equality 1= 4b = 3a = 3c
together with the conditiom(1) = 1 imply thatm(a) = m(c) = § andm(b) = ;.
Moreover, the equality & a ® b @ c implies thatm(a) + m(b) + m(c) =1, a
contradiction.

3. REGULAR EFFECT ALGEBRAS ADMITTING NO ORDERING
SET OF STATES

Definition 3.1. A setM of states on an effect algebra;(®, 0, 1) is callecbrder
determining(or ordering, for brevity) iff for all a, b € E the conditionm(a) <
m(b) for all m € M implies thata < b.

Recall, that an elemerat of an effect algebrd is calledisotropiciff 2a =
a @ aisdefinedinE andE is calledregulariff any two isotropic elements, d € E
are orthogonal(equivalentlyc & d is defined). Any Boolean algebra carries an
ordering set of states, as does the standard scale effect algebrad|® {ihe
real unit interval in whichp ® q = p + q iff p+ g < 1) and the standard effect
algebra&(H) of all positive self-adjoint operators on a Hilbert spad¢ehat are
bounded above by identity operator. Eveffect algebra admitting an ordering set
of stateds regular. Thus standard effect algebra [0SR and£(H) are regular
effect algebras (Foulis, n.d.).

We bring an example of even finite regular effect algebra admitting no ordering
set of states.

Example 3.2. Let (E; &, 0, 1) be the effect algebra with = {0, 1,a, b, ¢, 2a,
2b, 2c, 1}, in which 1=3a=3b=3c=adb@c. Then by cancellation
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law (see Dvureénskij and Pulmannay2000), we havb@® c =2a,a® b = 2c,
anda @ c = 2b.

Assume tham: E — (0, 1) is a state orE. Thenm(a) = m(b) = m(c) = %
which gives thae admits no ordering set of states.

Note thatE is proper and admits the unique statem(a) = m(b) = m(c) =
1 andm(2a) = m(2b) = m(2c) = 2. Of coursem(0) = 0 andm(1) = 1.

Proposition 3.3. Let (E; @, 0, 1) be an effect algebra and let there be mutu-
ally different elements,d&, ¢ € E such that ad b = 2c and b& ¢ = 2a. Then E
admits no ordering set of states.

Proof: Assume tham: E — (0, 1) is a state orE. Thenm(a) + m(b) = 2m(c)
andm(b) + m(c) = 2m(a). It follows thatm(a) = m(c). Thus the assumption that
there is an ordering se¥! of states orE implies thata = c, a contradiction. O

4. ORDERING SET OF VALUATIONS

Assume thatE; &, 0, 1) is a lattice effect algebra. According to Chovanec
and Kdpka (1997), elements, b of a lattice effect algebreH; &, 0, 1) are called
compatible(writtena <> b)iff (avb)oa=be (a A b). We say thaM C Eis
aset of mutually compatible elemeiiffsany two elements oM are compatible.

A lattice effect algebra is called &MV effect algebrgor aBoolean effect algebja
if any two elements oE are compatible.

The following statements may be found in Chovanec amgk& (1997),
RieCanowd (in press a), and Bennett and Foulis (1995).

Lemma4.l. Let(E;®, 0, 1)be alattice effect algebra. Then the following con-
ditions are equivalent:

(i) anb=0=a<b.
(i) Any two elements, & in E are compatible
(i) @ has the unique extension to a semigroup operatiam E s.t(E; &,’,
0, 1) becomes an MV algebra.

An example of a lattice effect algebra that is neither an orthomodular lattice
nor an MV algebra is, for example, a direct product or 0-1 pasting (pasting by
identification of elements 0 and 1) of an orthomodular lattice and MV effect algebra
that are considered as two effect algebras.

Theorem 4.2. |If a lattice effect algebrdE; @, 0, 1)admits an ordering set S of
valuations then E is an MV effect algebra.
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Proof: Leta,be EwithaAb=0.Thena' vb' =1, and hence for every
Swe have

l+w@ Ab)=w@ VvD)+o@ Ab)=w@)+ o),
which gives that
0<w@ AD)=0wd)—-(1-w@)) =owld) - w@).

It follows thatw(a) < w(b') for all w € Sand hence < b'. This proves that
E is an MV effect algebra. O

Recall that an effect algebra is calladchimedearif for no nonzero element
ec E,ne=a@®--- ®e(ntimes) exists for alh € N.

Theorem 4.3. An Archimedean atomic lattice effect algel{ig; &, 0, 1) is an
MV effect algebra iff there is an ordering set S of valuations on E.

Proof: (1) LetE be anatomic MV effectalgebraadd= {a € E | ais an atom of
E}. Define, for evena € A, amapw,: E — [0, 1] by wa(X) = E_ x € E; where
n, = ord@) is the greatest integer such tima = a @ - - - ® a (n, times) exists
andkX € N U {0} is the greatest integer for whidtja < x. Evidently,wa(x) < 1

forall x € E andw,(1) = 1.

Assume thak, y € E with x < y'. We can easily see that the Riesz decom-
position property implies that Ka < x @ y thenka = (I1a) & (ta), wherela < x
andta <y, I,t € N U {0}. Iffollows thatwa (X & y) = wa(X) + wa(y), and hence
w, is a state ork. SinceE is an MV effect algebra, is a valuation.

Let us show thaS= {w, | a € A} is an ordering set of valuations da.
Clearly,x, y € E with x <y implieswa(X) < wa(y) for all w4 € S. Conversely,
assume thab,(x) < wa(y) for all w,; € S. By RieCanowd (2001a) for everx € E
we havex = \/{u € E | u < x, uis afinite element o€}, whereu € E is called
finite if there are not the different necessary at@ns . ., a, € E such thau =
a @ --- ®ay. Moreover if for mutually different atoma, b € E andk,l € N
there is ka) & (Ib), then ka) A (Ib) = 0and ka) v (Ib) = (ka) @ (Ib). It follows
thatx = \/{ka| ka < x,k € N, ais an atom ofE}. If wa(X) < wa(y) for every
atoma of E thenka < x implies that

k KX ¢4
n = e wa(X) < wa(y) = n
which gives thaka < y. We conclude that < y.

(2) If there is an ordering set of valuations @&then E is an MV effect

algebra by Theorem 4.2.0
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5. COMPLETE EFFECT ALGEBRAS ADMITTING NO
ORDER-CONTINUOUS VALUATIONS

Assume that is a directed set and{),c¢ is a net of elements of a lat-
tice effect algebraK; @, 0, 1). We writex, 1 X if Xy, < Xq,, for all a1 < o, and
x = V{X, | @ € &}. Alattice effect algebré& is calledorder continuousf x, 1 x
impliesx, Ay 1 X Ay, forallx,, X, y € E. A statew on E is called order contin-
uous ((0)-continuous for brevity) i, 1+ ximpliesw(x,) 1 w(X), forallx,, x € E.
For more we refer to Kirchheimavand Rieanow (1997).

In RieCanowd (in press a) it has been shown that if on a lattice effect algebra
E there exists a faithful (0)-continuous valuation théris separable, modular,
(Gratzer, 1998), and (0)-continuous. In this section we study complete effect
algebras with not necessarily faithful but (0)-continuous valuation.

Recall that an elemert of a lattice effect algebrd& is central if x =
(xA2z)v(xAZ)forall x € E. Thecenter GQE) of E is the set of all central
elements oE (see Greechiet al., 1995; Rieanow, 2000).

Theorem 5.1. Let (E;®, 0, 1) be a complete effect algebra and let E —

[0, 1] be an (0)-continuous valuation. Thegi&a \/{x € E | w(x) = 0} is a central
element of E andv(ag) = 0. Moreover, E is isomorphic to the direct product
[0, ag] x [0, ag] of effect algebrag0, ag] and [0, a;] under whichw /[0, ag] is a
faithful valuation on the complete modular order-continuous and separable effect
algebral0, a].

Proof: LetusputB={xe E|x<« yforallye E}andEs={ve E|VA
v’ = 0}. By Riecanows (2001a)C(E) = Esn B.

Let us first prove thagy € B. Assumex € E. Becausew is a valuation
we havew(X Vv ag) + w(X A &) = w(X) + w(ag). SetEg = {x € E | w(x) = 0}.
For every finiteF C Eo we putxg = \/F. Let £ = {F C Eg | F is finite}.
Clearly, £ is directed by set inclusion and- 1 ag. As w is (0)-continuous we
obtain thatw(xg) 1 w(ap). Further if F = {x1, X2, ..., Xn} thenw(Xg) < w(X1) +
w(X2) + - - - + w(Xn) = 0, by subadditivity ofw. We conclude thai(ap) = 0. It
follows thatw(x A ap) = O for everyx € E and hencey(x v ap) = w(x). The last
equality implies that w((x v ag) © x) =w(X'© (X' Aay))=0. Thus X' &
(X" A &j) < ag, which gives thaix’ & (X' A ap) <> @. As alsox’ A a; <> ag, we
conclude thak’ = (X’ A ap) ® (X' © (X' A &))) < &g (see Rieanowd, 2000) and
hencex <> ap. This proves thaty € B.

Let us show now thasy € Es. Assume thae < ag A & for somee € E.
Thene @ ag is defined andv(e) = 0. As w is a state we obtaim(e ® ag) = 0,
which givese @ ap < &g, and hence = 0. This proves tha A a; = 0, and hence
ap € Es (Riecanowd, 2001b).
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Finally for nonzerox € E with x < a; we havew(x) # 0, sincew(x) = 0
implies that 0+ x < ag A &, a contradiction. By Riegnow (in press a) we ob-
tain that [0,a)] is a complete modular order-continuous and separable effect
algebra. O

Corollary 5.2. Let(E;®, 0, 1) be a nonmodular complete effect algebra with
the center CE) = {0, 1}. Then E is admitting no order-continuous valuations.
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